下载 | 经典不衰的资料《神经网络机器学习》

资料:神经网络机器学习全套PPT

作者:Geoffrey Hinton

主页:https://www.cs.toronto.edu/~hinton/

推荐理由:详细介绍了神经网络的各种概念与特点,虽然来自于5年前,但仍不失为一份很有意义的讲解。对于算法研究者来说,重温经典有助于加深对这一领域的理解,并对未来的研究方向起到一定的借鉴意义。


640?wx_fmt=png


视频+全套PPT

下载方式

关注公众号,后台回复关键词

20190117


推荐阅读

MIT《深度学习基础》第一课68分钟视频+69页PPT

7种简洁Python语法,教你码出一手好代码

送书 | 人工智能书单推荐,免费送10本!

深度学习基础知识|上

斩获BAT等7家Offer!GitHub4万Star项目作者的面试经历

必备 | AI & DS七大 Python 库

下载 | 954页《数据可视化》手册

知识点 | 全面理解支持向量机


640?wx_fmt=png

已标记关键词 清除标记
相关推荐
神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络机器学习》)。在本书中,作者结合近年来神经网络机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 2. 核方法,包括支持向量机和表达定理。 3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。 4. 随机动态规划,包括逼近和神经动态规划。 5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。 6. 利用逐次状态估计算法训练递归神经网络。 7. 富有洞察力的面向计算机的试验。
本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。第一部分介绍基本的思路,包括神经网络底层的数学知识,第2部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第3部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在Raspberry Pi上工作。 第 1 章 神经网络如何工作001 1.1 尺有所短,寸有所长 001 1.2 一台简单的预测机 003 1.3 分类器与预测器并无太大差别008 1.4 训练简单的分类器 011 1.5 有时候一个分类器不足以求解问题 020 1.6 神经元——大自然的计算机器 024 1.7 在神经网络中追踪信号 033 1.8 凭心而论,矩阵乘法大有用途 037 1.9 使用矩阵乘法的三层神经网络示例 043 1.10 学习来自多个节点的权重 051 1.11 多个输出节点反向传播误差053 1.12 反向传播误差到更多层中 054 1.13 使用矩阵乘法进行反向传播误差 058 1.14 我们实际上如何更新权重 061 1.15 权重更新成功范例 077 1.16 准备数据 078 第 2 章 使用Python进行DIY 083 2.1 Python 083 2.2 交互式Python = IPython 084 2.3 优雅地开始使用Python 085 2.4 使用Python制作神经网络 105 2.5 手写数字的数据集MNIST 121 第 3 章 趣味盎然 153 3.1 自己的手写数字 153 3.2 神经网络大脑内部 156 3.3 创建新的训练数据:旋转图像 160 3.4 结语 164 附录A 微积分简介 165 A.1 一条平直的线 166 A.2 一条斜线 168 A.3 一条曲线 170 A.4 手绘微积分 172 A.5 非手绘微积分 174 A.6 无需绘制图表的微积分 177 A.7 模式 180 A.8 函数的函数 182 附录B 使用树莓派来工作 186 B.1 安装IPython 187 B.2 确保各项工作正常进行 193 B.3 训练和测试神经网络 194 B.4 树莓派成功了 195
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页